The Evanescent Wave

The Evanescent Wave

Consider the following scenario

Evanescent Wave Diagram

The input wave can be written as

LaTeX: \overset{\rightharpoonup }{E}_t\left(\overset{\rightharpoonup }{r},t\right)=\overset{\rightharpoonup }{E}_{0,t}e^{i \left(\overset{\rightharpoonup
}{k}_i\cdot \overset{\rightharpoonup }{r}-\omega  t\right)}Et(r,t)=E0,tei(kirωt)

in this case we have

LaTeX: \overset{\rightharpoonup }{E}_t\left(\overset{\rightharpoonup }{r},t\right)=\overset{\rightharpoonup }{E}_{0,t}e^{i \left(k_xx+k_zz-\omega  t\right)}Et(r,t)=E0,tei(kxx+kzzωt)

from the diagram we see that

LaTeX: k_z=k_0n_t\cos \left(\theta _t\right)kz=k0ntcos(θt)

from Snell's Law we have

LaTeX: \theta _t=\arcsin \left(\frac{n_i}{n_t}\sin \left(\theta _i\right)\right)θt=arcsin(nintsin(θi))

inserting this we have

LaTeX: k_z=k_0n_t\cos \left(\arcsin \left(\frac{n_i}{n_t}\sin \left(\theta _i\right)\right)\right)=k_0n_t\sqrt{1-\left(\frac{n_i}{n_t}\right){}^2\sin
\left(\theta _i\right){}^2}kz=k0ntcos(arcsin(nintsin(θi)))=k0nt1(nint)2sin(θi)2

and similarly

LaTeX: k_x=k_0n_t\sin \left(\arcsin \left(\frac{n_i}{n_t}\sin \left(\theta _i\right)\right)\right)=k_0n_i\sin \left(\theta _i\right)kx=k0ntsin(arcsin(nintsin(θi)))=k0nisin(θi)

we can now insert these into our representation for the transmitted wave

LaTeX: \overset{\rightharpoonup }{E}_t\left(\overset{\rightharpoonup }{r},t\right)=\overset{\rightharpoonup }{E}_{0,t}e^{i k_zz}e^{i k_xx}e^{-i \omega
 t}=\overset{\rightharpoonup }{E}_{0,t}e^{i k_0n_t\sqrt{1-\left(\frac{n_i}{n_t}\right){}^2\sin \left(\theta _i\right){}^2}z}e^{i k_0n_i\sin \left(\theta
_i\right)x}e^{-i \omega  t}Et(r,t)=E0,teikzzeikxxeiωt=E0,teik0nt1(nint)2sin(θi)2zeik0nisin(θi)xeiωt

rearranging this for some clarity

LaTeX: \overset{\rightharpoonup }{E}_t\left(\overset{\rightharpoonup }{r},t\right)=\overset{\rightharpoonup }{E}_{0,t}\left[e^{i k_0n_i\sin \left(\theta
_i\right)x}e^{-i \omega  t}\right]e^{i k_0n_t\sqrt{1-\left(\frac{n_i}{n_t}\right){}^2\sin \left(\theta _i\right){}^2}z}Et(r,t)=E0,t[eik0nisin(θi)xeiωt]eik0nt1(nint)2sin(θi)2z

and focusing on the last term noting that in the case of total internal reflection LaTeX: n_i>n_tni>nt and LaTeX: \left(\frac{n_i}{n_t}\right){}^2\sin \left(\theta _i\right){}^2>1(nint)2sin(θi)2>1, we can write this as

LaTeX: e^{-k_0n_t\sqrt{\left(\frac{n_i}{n_t}\right){}^2\sin \left(\theta _i\right){}^2-1}z}=e^{-\alpha  z}ek0nt(nint)2sin(θi)21z=eαz

where I've defined

LaTeX: \alpha \equiv k_0n_t\sqrt{\left(\frac{n_i}{n_t}\right){}^2\sin \left(\theta _i\right){}^2-1}αk0nt(nint)2sin(θi)21

as a real, positive number. Putting this all together we have

LaTeX: \overset{\rightharpoonup }{E}_t\left(\overset{\rightharpoonup }{r},t\right)=\overset{\rightharpoonup }{E}_{0,t} e^{i \left(k_0n_i\sin \left(\theta
_i\right)x- \omega  t\right)}e^{-\alpha  z}Et(r,t)=E0,tei(k0nisin(θi)xωt)eαz

This is a wave disturbance that moves along the interface between the two materials and decays very quickly away from the interface due to the decaying exponential in the z-direction. This is called an evanescent wave. It can be shown that the z-component of the evanescent field carries no power away from the interface although there is power carried along the interface.