Light is a Transverse Wave

Light is a Transverse Wave

In the previous module we studied different types of waves. This page will detail the fact that light is a transverse wave.

Electric Field and K-Vector

We first investigate this fact using one of Maxwell's equations e.g., Gauss's equation for electric field in vacuum

LaTeX: \overset{\rightharpoonup }{\nabla }\cdot \overset{\rightharpoonup }{E}=0E=0

and then assume a particularly useful type of wave that we have already discussed i.e., a plane wave. A plane wave propagating in an arbitrary direction can be written as

LaTeX: \overset{\rightharpoonup }{E}\left(\overset{\rightharpoonup }{r},t\right)=\overset{\rightharpoonup }{E}_0 e^{i \left(\overset{\rightharpoonup }{k}\cdot \overset{\rightharpoonup }{r}-\omega t\right)}E(r,t)=E0ei(krωt)

where

LaTeX: \overset{\rightharpoonup }{E}_0=E_{0,x}\hat{i} + E_{0,y}\hat{j}+ E_{0,z}\hat{k}E0=E0,xˆi+E0,yˆj+E0,zˆk

and

LaTeX: E_{0,x}

\text{, }

E_{0,y}

\text{, and }

E_{0,z}E0,xE0,y, and E0,z

are complex constants. Using Gauss's equation for electric fields in vacuum, we see that

LaTeX: \overset{\rightharpoonup }{\nabla }\cdot \overset{\rightharpoonup }{E}=\overset{\rightharpoonup }{\nabla }\cdot \overset{\rightharpoonup }{E}_0 e^{i \left(\overset{\rightharpoonup }{k}\cdot \overset{\rightharpoonup }{r}-\omega t\right)}=\overset{\rightharpoonup }{\nabla }\cdot (E_{0,x}\hat{i} + E_{0,y}\hat{j}+ E_{0,z}\hat{k})e^{i \left(\overset{\rightharpoonup }{k}\cdot \overset{\rightharpoonup }{r}-\omega t\right)}E=E0ei(krωt)=(E0,xˆi+E0,yˆj+E0,zˆk)ei(krωt)

distributing the divergence

LaTeX: \overset{\rightharpoonup }{\nabla }\cdot \overset{\rightharpoonup }{E}=E_{0,x} \frac{\partial}{\partial x} e^{i \left(\overset{\rightharpoonup }{k}\cdot \overset{\rightharpoonup }{r}- \omega t\right)}+E_{0,y} \frac{\partial }{\partial y}e^{i \left(\overset{\rightharpoonup }{k}\cdot \overset{\rightharpoonup }{r}- \omega t\right)}+E_{0,z} \frac{\partial }{\partial z}e^{i \left(\overset{\rightharpoonup }{k}\cdot \overset{\rightharpoonup }{r}-\omega t\right)}E=E0,xxei(krωt)+E0,yyei(krωt)+E0,zzei(krωt)

and noting

LaTeX: \overset{\rightharpoonup }{k}=k_x\hat{i} +k_y\hat{j} +k_z\hat{k} k=kxˆi+kyˆj+kzˆk

and

LaTeX: \overset{\rightharpoonup }{r}=x\hat{i}+y\hat{j}+z\hat{k} r=xˆi+yˆj+zˆk

we can write LaTeX: \overset{\rightharpoonup }{k}\cdot \overset{\rightharpoonup }{r}kr as

LaTeX: e^{i \left(\overset{\rightharpoonup }{k}\cdot \overset{\rightharpoonup }{r}- \omega t\right)}=e^{i \left(k_x x+k_y y+ k_z z- \omega t\right)}ei(krωt)=ei(kxx+kyy+kzzωt)

so that

LaTeX: \overset{\rightharpoonup }{\nabla }\cdot \overset{\rightharpoonup }{E}=E_{0,x} \frac{\partial}{\partial x}e^{i \left(k_xx+k_yy+k_zz-\omega t\right)}+E_{0,y} \frac{\partial}{\partial y}e^{i \left(k_xx+k_yy+k_zz-\omega t\right)}+E_{0,z} \frac{\partial}{\partial z}e^{i \left(k_xx+k_yy+k_zz-\omega t\right)}E=E0,xxei(kxx+kyy+kzzωt)+E0,yyei(kxx+kyy+kzzωt)+E0,zzei(kxx+kyy+kzzωt)

carrying out the derivatives

LaTeX: i E_{0,x} k_x e^{i \left(k_xx+k_yy+k_zz-\omega t\right)}+i E_{0,y} k_y e^{i \left(k_xx+k_yy+k_zz-\omega t\right)}+i E_{0,z} k_z e^{i \left(k_xx+k_yy+k_zz-\omega t\right)}=0iE0,xkxei(kxx+kyy+kzzωt)+iE0,ykyei(kxx+kyy+kzzωt)+iE0,zkzei(kxx+kyy+kzzωt)=0

noting that the complex exponentials cancel we see that

LaTeX: i k_x E_{0,x}+i k_y E_{0,y}+i k_z E_{0,z}=0ikxE0,x+ikyE0,y+ikzE0,z=0

or written again in vector notation,

LaTeX: \boxed{\overset{\rightharpoonup }{k}\cdot \overset{\rightharpoonup }{E}_0=0}kE0=0

this clearly indicates that the k-vector and the electric field vector are orthogonal.

Magnetic Field and K-Vector

Our next step is to use Faraday's Law in differential form

LaTeX: \overset{\rightharpoonup }{\nabla }\times \overset{\rightharpoonup }{E}=-\frac{\partial \overset{\rightharpoonup }{B}}{\partial t}×E=Bt

and again choose a plane wave written as

LaTeX: \overset{\rightharpoonup }{E}\left(\overset{\rightharpoonup }{r},t\right)=\overset{\rightharpoonup }{E}_0 e^{i \left(\overset{\rightharpoonup }{k}\cdot \overset{\rightharpoonup }{r}-\omega t\right)}E(r,t)=E0ei(krωt)

the LHS of Faraday's law says

LaTeX: \overset{\rightharpoonup }{\nabla }\times \overset{\rightharpoonup }{E}=[(E_{0,z}\partial_y-E_{0,y}\partial_z)\hat{i}-(E_{0,z}\partial_x-E_{0,x}\partial_z)\hat{j}+(E_{0,y}\partial_x-E_{0,x}\partial_y)\hat{k}]e^{i(k_xx+k_yy+k_zz-\omega t)}×E=[(E0,zyE0,yz)ˆi(E0,zxE0,xz)ˆj+(E0,yxE0,xy)ˆk]ei(kxx+kyy+kzzωt)

carrying out these derivatives we see that

LaTeX: i[(E_{0,z}k_y-E_{0,y}k_z)\hat{i}-(E_{0,z}k_x-E_{0,x}k_z)\hat{j}+(E_{0,y}k_x-E_{0,x}k_y)\hat{k}]e^{i(k_xx+k_yy+k_zz-\omega t)}=-\frac{\partial \overset{\rightharpoonup }{B}}{\partial t}i[(E0,zkyE0,ykz)ˆi(E0,zkxE0,xkz)ˆj+(E0,ykxE0,xky)ˆk]ei(kxx+kyy+kzzωt)=Bt

the term in square brackets can be written as a cross product itself, which means

LaTeX: i \left(\overset{\rightharpoonup }{k}\times\overset{\rightharpoonup }{E}_0 \right) e^{i \left(k_xx+ k_yy+k_zz-\omega t\right)}=-\frac{\partial \overset{\rightharpoonup }{B}}{\partial t}i(k×E0)ei(kxx+kyy+kzzωt)=Bt

the cross product in front is a vector but has no functional dependence (i.e., a constant vector) which means that the functional form of the magnetic field must also be a plane wave inasmuch as

LaTeX: -\frac{\partial \overset{\rightharpoonup }{B}}{\partial t}=i \overset{\rightharpoonup }{\mathcal{B}}_0 e^{i \left(k_xx+k_yy+k_zz- \omega t\right)}Bt=iB0ei(kxx+kyy+kzzωt)

the only way for this to be true is if

LaTeX: \overset{\rightharpoonup }{B}=\frac{-i \overset{\rightharpoonup }{\mathcal{B}}_0}{-i \omega }e^{i \left(k_xx+k_yy+k_zz- \omega t\right)}=\frac{\overset{\rightharpoonup }{\mathcal{B}}_0 }{\omega }e^{i \left(k_xx+k_yy+k_zz- \omega t\right)}B=iB0iωei(kxx+kyy+kzzωt)=B0ωei(kxx+kyy+kzzωt)

for now, we absorb the 1/ω and define LaTeX: \overset{\rightharpoonup }{B_0}\equiv \frac{\overset{\rightharpoonup }{\mathcal{B}}_0}{\omega }B0B0ω, so that our magnetic field is

LaTeX: \overset{\rightharpoonup }{B}=\overset{\rightharpoonup }{B}_0 e^{i \left(k_xx+k_yy+k_zz-\omega t\right)}B=B0ei(kxx+kyy+kzzωt)

Now that it is clear that the magnetic and electric fields are BOTH plane waves if either are. It is also imperative that we understand that because both electric and magnetic fields share the same time dependence they are IN PHASE. We can now immediately use Gauss's law for magnetic fields to write

LaTeX: \overset{\rightharpoonup }{\nabla }\cdot \overset{\rightharpoonup }{B}=0

,B=0,

which, as in the case of Gauss's law for electric fields gives

LaTeX: \boxed{\overset{\rightharpoonup }{k}\cdot \overset{\rightharpoonup }{B_0}=0}kB0=0

We understand this to mean that the k-vector is also perpendicular to the magnetic field.

Electric and Magnetic Fields

The last relation we investigate here is given by Ampere's law in vacuum, which states

LaTeX: \overset{\rightharpoonup }{\nabla }\times \overset{\rightharpoonup }{B}=\mu _0\epsilon _0 \frac{\partial \overset{\rightharpoonup }{E}}{\partial t}

.×B=μ0ϵ0Et.

Now that we have a form for both the electric and magnetic fields in the case of plane waves, we can write

LaTeX: i \left(\overset{\rightharpoonup }{k}\times\overset{\rightharpoonup }{B}_0 \right)=i \mu _0   \epsilon _0\omega \overset{\rightharpoonup }{E}_0i(k×B0)=iμ0ϵ0ωE0

this can be written as

LaTeX: \overset{\rightharpoonup }{E}_0=\frac{1}{\mu _0 \omega  \epsilon _0}(\overset{\rightharpoonup }{k}\times\overset{\rightharpoonup }{B}_0) =\frac{k_0}{\mu _0 \omega  \epsilon _0}(\overset{\rightharpoonup }{k}\times\overset{\rightharpoonup }{B}_0 )E0=1μ0ωϵ0(k×B0)=k0μ0ωϵ0(k×B0)

where I have defined the k-vector

LaTeX: \overset{\rightharpoonup }{k}\equiv k_0 \hat{k}_0kk0ˆk0

as a unit vector in the LaTeX: k_0k0-hat direction with magnitude LaTeX: k_0k0. We also not that the speed of light is given, as before

LaTeX: c=\frac{1}{\sqrt{\mu _0 \epsilon _0}}c=1μ0ϵ0

and

LaTeX: k_0=\frac{\omega }{c}k0=ωc

inserting these relations we have

LaTeX: \boxed{\overset{\rightharpoonup }{E}_0=c \left(\hat{k}_0 \times \overset{\rightharpoonup }{B}_0\right)}E0=c(ˆk0×B0)

the magnitude of the vector on the RHS is given by

LaTeX: \left| \hat{k}_0 \times\overset{\rightharpoonup }{B}_0\right| =\left| \hat{k}_0\right| \left| \overset{\rightharpoonup }{B}_0\right| \sin (\theta ) |ˆk0×B0|=|ˆk0||B0|sin(θ)

where θ is the angle between the two vectors. As we have previously shown, LaTeX: \hat{k}_0ˆk0 is perpendicular to LaTeX: \overset{\rightharpoonup }{B}_0B0so sin(θ)=1, which means

LaTeX: \left| \hat{k}_0 \times\overset{\rightharpoonup }{B}_0\right| = \left| \overset{\rightharpoonup }{B}_0\right||ˆk0×B0|=|B0|

the magnitude of the LHS is trivial so we have the relation

LaTeX: \boxed{\left| \overset{\rightharpoonup }{E}_0\right| =c \left| \overset{\rightharpoonup }{B}_0\right|}|E0|=c|B0|

Although this result was derived in the case of plane waves, it is quite general.