The Jones and Mueller Matrices

The Jones and Mueller Matrices

Generally speaking there are three types of devices that will transmit, but modify the polarization state of an incident wave. They are:

  1. Polarizer: transmits a single polarization state and removes others
  2. Phase retarder: Introduces a phase difference between wave components
  3. Rotator: Rotates the direction of linearly polarized light

As discussed above, we will write these operations as matrix transforms such that

LaTeX: \overset{\rightharpoonup }{E}'=\overleftrightarrow{M}\overset{\rightharpoonup }{E}E=ME

where LaTeX: \overleftrightarrow{M}M is the Jones matrix, LaTeX: \overset{\rightharpoonup }{E}E is the input electric field vector, and LaTeX: \overset{\rightharpoonup }{E}'E is the modified electric field vector. The first element we describe is the linear polarizer. The Jones matrix for a linear polarizer aligned with the x-y axes is

LaTeX: \overset{\rightharpoonup }{E}'=\left(
\begin{array}{cc}
 p_x & 0 \\
 0 & p_y \\
\end{array}
\right)\overset{\rightharpoonup }{E}E=(px00py)E

where LaTeX: 0\leq p_j\leq 10pj1, LaTeX: j=x,yj=x,y. Then, for complete transmission along the x-axis, LaTeX: p_y=0py=0 and LaTeX: p_x=1px=1, or

LaTeX: \left(
\begin{array}{c}
 E_x^{\prime } \\
 E_y^{\prime } \\
\end{array}
\right)=\left(
\begin{array}{cc}
 1 & 0 \\
 0 & 0 \\
\end{array}
\right)\left(
\begin{array}{c}
 E_{0,x} \\
 E_{0,y} \\
\end{array}
\right)=\left(
\begin{array}{c}
 E_{0,x} \\
 0 \\
\end{array}
\right)(ExEy)=(1000)(E0,xE0,y)=(E0,x0)

and similarly for complete transmission along the y-axis, LaTeX: p_x=0px=0 and LaTeX: p_y=1py=1, or

LaTeX: \left(
\begin{array}{c}
 E_x^{\prime } \\
 E_y^{\prime } \\
\end{array}
\right)=\left(
\begin{array}{cc}
 0 & 0 \\
 0 & 1 \\
\end{array}
\right)\left(
\begin{array}{c}
 E_{0,x} \\
 E_{0,y} \\
\end{array}
\right)=\left(
\begin{array}{c}
 0 \\
 E_{0,y} \\
\end{array}
\right)(ExEy)=(0001)(E0,xE0,y)=(0E0,y)

The phase retarder produces a total relative phase shift, LaTeX: \varphiφ, between the x- and y-components of the input wave. That means we would write

LaTeX: \overset{\rightharpoonup }{E}'=\left(
\begin{array}{cc}
 e^{i \varphi /2} & 0 \\
 0 & e^{-i \varphi /2} \\
\end{array}
\right)\overset{\rightharpoonup }{E}E=(eiφ/200eiφ/2)E

or, just to be concrete

LaTeX: \left(
\begin{array}{c}
 E_x^{\prime } \\
 E_y^{\prime } \\
\end{array}
\right)=\left(
\begin{array}{cc}
 e^{i \varphi /2} & 0 \\
 0 & e^{-i \varphi /2} \\
\end{array}
\right)\left(
\begin{array}{c}
 E_{0,x} \\
 E_{0,y} \\
\end{array}
\right)=\left(
\begin{array}{c}
 E_{0,x}e^{i \varphi /2} \\
 E_{0,y}e^{-i \varphi /2} \\
\end{array}
\right)(ExEy)=(eiφ/200eiφ/2)(E0,xE0,y)=(E0,xeiφ/2E0,yeiφ/2)

and

LaTeX: \overset{\rightharpoonup }{E}'=E_{0,x}e^{i \varphi /2}\hat{i}+E_{0,y}e^{-i \varphi /2}\hat{j}=e^{i \varphi /2}\left(E_{0,x}\hat{i}+E_{0,y}e^{-i
\varphi }\hat{j}\right)E=E0,xeiφ/2ˆi+E0,yeiφ/2ˆj=eiφ/2(E0,xˆi+E0,yeiφˆj)

where the last equality explicitly shows that LaTeX: E_yEy is phase advanced from LaTeX: E_xEx by LaTeX: \varphiφ.

The two most common phase retarders are quarter wave, and half wave.

Quarter Wave Plate

The Jones matrix representing a quarter wave plate is given when LaTeX: \varphi =\pi /2φ=π/2 (remember, π/2 is a quarter of the full wave, which is 2π)

LaTeX: \overleftrightarrow{M}_{\text{QWP}}=\left(
\begin{array}{cc}
 e^{i \pi /4} & 0 \\
 0 & e^{-i \pi /4} \\
\end{array}
\right)=e^{i \pi /4}\left(
\begin{array}{cc}
 1 & 0 \\
 0 & e^{-i \pi /2} \\
\end{array}
\right)=e^{i \pi /4}\left(
\begin{array}{cc}
 1 & 0 \\
 0 & -i \\
\end{array}
\right)MQWP=(eiπ/400eiπ/4)=eiπ/4(100eiπ/2)=eiπ/4(100i)

or simply

LaTeX: \overleftrightarrow{M}_{\text{QWP}}=e^{i \pi /4} \left(
\begin{array}{cc}
 1 & 0 \\
 0 & -i \\
\end{array}
\right)MQWP=eiπ/4(100i)

Half Wave Plate

The Jones matrix representing a half wave plate is given when LaTeX: \varphi=\piφ=π (remember, π is a half of the full wave, which is 2π)

LaTeX: \overleftrightarrow{M}_{\text{HWP}}=\left(
\begin{array}{cc}
 e^{i \pi /2} & 0 \\
 0 & e^{-i \pi /2} \\
\end{array}
\right)=e^{i \pi /2}\left(
\begin{array}{cc}
 1 & 0 \\
 0 & e^{-i \pi } \\
\end{array}
\right)=i \left(
\begin{array}{cc}
 1 & 0 \\
 0 & -1 \\
\end{array}
\right)MHWP=(eiπ/200eiπ/2)=eiπ/2(100eiπ)=i(1001)

Rotated Wave Retarders

All of the matrices we have derived just now have been aligned with the x- and y-axes.

It turns out that if we want to rotate a vector counter-clockwise (when the axis about which the vector is being rotated is pointing toward you, LaTeX: \hat{z}ˆz in these examples) you simply multiply the vector by the 2D rotation matrix:

LaTeX: \overleftrightarrow{R}(\theta )=\left(
\begin{array}{cc}
 \cos (\theta ) & -\sin (\theta ) \\
 \sin (\theta ) & \cos (\theta ) \\
\end{array}
\right)R(θ)=(cos(θ)sin(θ)sin(θ)cos(θ))

see the figure below

Vector Rotation Positive

For instance, if we started with a vector aligned with the x-axis and wanted to rotate it by that in the counter-clockwise direction, we would have

LaTeX: \overset{\rightharpoonup }{v}'=\left(
\begin{array}{cc}
 \cos (\theta ) & -\sin (\theta ) \\
 \sin (\theta ) & \cos (\theta ) \\
\end{array}
\right)\overset{\rightharpoonup }{v}v=(cos(θ)sin(θ)sin(θ)cos(θ))v

or, in this particular example

LaTeX: \left(
\begin{array}{c}
 \cos (\theta ) \\
 \sin (\theta ) \\
\end{array}
\right)=\left(
\begin{array}{cc}
 \cos (\theta ) & -\sin (\theta ) \\
 \sin (\theta ) & \cos (\theta ) \\
\end{array}
\right)\left(
\begin{array}{c}
 1 \\
 0 \\
\end{array}
\right)(cos(θ)sin(θ))=(cos(θ)sin(θ)sin(θ)cos(θ))(10)

writing this in unit vector notation

LaTeX: \overset{\rightharpoonup }{v}'=\cos (\theta )\hat{i}+\sin (\theta )\hat{j}v=cos(θ)ˆi+sin(θ)ˆj

which is simply a vector that points anywhere in the plane with magnitude 1.

Now, if we took that same vector and rotated it by NEGATIVE θ, we would get the figure on the left below here

Vector and Axes Rotation

In math, we would write

LaTeX: \overset{\rightharpoonup }{v}'=\overleftrightarrow{R}(-\theta )\overset{\rightharpoonup }{v}=\left(
\begin{array}{cc}
 \cos (\theta ) & \sin (\theta ) \\
 -\sin (\theta ) & \cos (\theta ) \\
\end{array}
\right)\overset{\rightharpoonup }{v}v=R(θ)v=(cos(θ)sin(θ)sin(θ)cos(θ))v

This turns out to be the same thing as rotating the AXES by a positive angle as you can see in the second figure on the right above. So if we want to rotate AXES we multiply by LaTeX: \overleftrightarrow{R}(-\theta )R(θ).

Now, if we want to 'rotate' a matrix so that the axes of the matrix are no longer aligned with 'x' and 'y', we write

LaTeX: \overleftrightarrow{M}'=\overleftrightarrow{R}(\theta )\overleftrightarrow{M}\overleftrightarrow{R}(-\theta )M=R(θ)MR(θ)

So for instance, if we want to write the Jones matrix for a general phase retarder, which is

LaTeX: \overleftrightarrow{M}_{\varphi }=\left(
\begin{array}{cc}
 e^{i \varphi /2} & 0 \\
 0 & e^{-i \varphi /2} \\
\end{array}
\right)Mφ=(eiφ/200eiφ/2)

in some rotated axes. We would write

LaTeX: \overleftrightarrow{M}_{\varphi }^{\prime }=\overleftrightarrow{R}(\theta )\overleftrightarrow{M}_{\varphi }\overleftrightarrow{R}(-\theta )=\left(
\begin{array}{cc}
 \cos (\theta ) & -\sin (\theta ) \\
 \sin (\theta ) & \cos (\theta ) \\
\end{array}
\right)\left(
\begin{array}{cc}
 e^{i \varphi /2} & 0 \\
 0 & e^{-i \varphi /2} \\
\end{array}
\right)\left(
\begin{array}{cc}
 \cos (\theta ) & \sin (\theta ) \\
 -\sin (\theta ) & \cos (\theta ) \\
\end{array}
\right)Mφ=R(θ)MφR(θ)=(cos(θ)sin(θ)sin(θ)cos(θ))(eiφ/200eiφ/2)(cos(θ)sin(θ)sin(θ)cos(θ))

multiplying these products out, we get

LaTeX: \overleftrightarrow{M}_{\varphi }^{\prime }=\left(
\begin{array}{cc}
 e^{-\frac{i \varphi }{2}} \left(\sin ^2(\theta )+e^{i \varphi } \cos ^2(\theta )\right) & i \sin (2 \theta ) \sin \left(\frac{\varphi }{2}\right)
\\
 i \sin (2 \theta ) \sin \left(\frac{\varphi }{2}\right) & e^{-\frac{i \varphi }{2}} \left(\cos ^2(\theta )+e^{i \varphi } \sin ^2(\theta )\right)
\\
\end{array}
\right)Mφ=(eiφ2(sin2(θ)+eiφcos2(θ))isin(2θ)sin(φ2)isin(2θ)sin(φ2)eiφ2(cos2(θ)+eiφsin2(θ)))

and simplified using Euler's form for sine, LaTeX: \sin (\varphi /2)=\frac{1}{2i}\left(e^{i \varphi /2}-e^{-i \varphi /2}\right)sin(φ/2)=12i(eiφ/2eiφ/2) and factoring out LaTeX: e^{i \varphi /2}eiφ/2, we have

LaTeX: \overleftrightarrow{M}_{\varphi }^{\prime }=e^{i \varphi /2} \left(
\begin{array}{cc}
 \cos ^2(\theta )+e^{-i \varphi } \sin ^2(\theta ) &  \left(1-e^{-i \varphi }\right)\sin (2 \theta ) \frac{1}{2} \\
 \left(1-e^{-i \varphi }\right)\sin (2 \theta ) \frac{1}{2} &  e^{-i \varphi }\cos ^2(\theta )+\sin ^2(\theta ) \\
\end{array}
\right)Mφ=eiφ/2(cos2(θ)+eiφsin2(θ)(1eiφ)sin(2θ)12(1eiφ)sin(2θ)12eiφcos2(θ)+sin2(θ))

or, getting rid of the factors of 1/2 with a trig. identity Links to an external site.

LaTeX: \overleftrightarrow{M}_{\varphi }^{\prime }=e^{i \varphi /2} \left(
\begin{array}{cc}
 \cos ^2(\theta )+e^{-i \varphi } \sin ^2(\theta ) &  \left(1-e^{-i \varphi }\right)\sin (\theta )\cos (\theta ) \\
 \left(1-e^{-i \varphi }\right)\sin (\theta )\cos (\theta ) &  e^{-i \varphi }\cos ^2(\theta )+\sin ^2(\theta ) \\
\end{array}
\right)Mφ=eiφ/2(cos2(θ)+eiφsin2(θ)(1eiφ)sin(θ)cos(θ)(1eiφ)sin(θ)cos(θ)eiφcos2(θ)+sin2(θ))

Again, we can use this to write the Jones matrix for a quarter wave plate i.e., when LaTeX: \varphi =\pi /2φ=π/2

LaTeX: \overleftrightarrow{M}_{\text{QWP}}^{\prime }(\theta )=e^{i \pi /4} \left(
\begin{array}{cc}
 \cos ^2(\theta )+e^{-i \pi /2} \sin ^2(\theta ) &  \left(1-e^{-i \pi /2}\right)\sin (\theta )\cos (\theta ) \\
 \left(1-e^{-i \pi /2}\right)\sin (\theta )\cos (\theta ) &  e^{-i \pi /2}\cos ^2(\theta )+\sin ^2(\theta ) \\
\end{array}
\right)MQWP(θ)=eiπ/4(cos2(θ)+eiπ/2sin2(θ)(1eiπ/2)sin(θ)cos(θ)(1eiπ/2)sin(θ)cos(θ)eiπ/2cos2(θ)+sin2(θ))

simplified using LaTeX: e^{-i \pi /2}=-ieiπ/2=i

LaTeX: \overleftrightarrow{M}_{\text{QWP}}^{\prime }(\theta )=e^{i \pi /4} \left(
\begin{array}{cc}
 \cos ^2(\theta )-i \sin ^2(\theta ) &  (1+i)\sin (\theta )\cos (\theta ) \\
 (1+i)\sin (\theta )\cos (\theta ) &  \sin ^2(\theta )-i \cos ^2(\theta ) \\
\end{array}
\right)MQWP(θ)=eiπ/4(cos2(θ)isin2(θ)(1+i)sin(θ)cos(θ)(1+i)sin(θ)cos(θ)sin2(θ)icos2(θ))

Let's test to make sure this returns what we got before when θ=0

LaTeX: \overleftrightarrow{M}_{\text{QWP}}(0)=e^{i \pi /4} \left(
\begin{array}{cc}
 1 &  0 \\
 0 &  e^{-i \pi /2} \\
\end{array}
\right)=e^{i \pi /4} \left(
\begin{array}{cc}
 1 &  0 \\
 0 &  -i \\
\end{array}
\right)MQWP(0)=eiπ/4(100eiπ/2)=eiπ/4(100i)

which is indeed what we derived before. And when LaTeX: \theta =\pi /2θ=π/2

LaTeX: \overleftrightarrow{M}_{\text{QWP}}^{\prime }(\pi/2)=e^{i \pi /4} \left(
\begin{array}{cc}
 -i & 0 \\
 0 & 1 \\
\end{array}
\right)MQWP(π/2)=eiπ/4(i001)

We get a quarter-wave plate with the fast axis horizontal, which is the original QWP rotated by 90o. Then the half-wave plate is given when LaTeX: \varphi =\piφ=π

LaTeX: \overleftrightarrow{M}_{\text{HWP}}^{\prime }(\theta )=e^{i \pi /2} \left(
\begin{array}{cc}
 \cos ^2(\theta )+e^{-i \pi } \sin ^2(\theta ) &  \left(1-e^{-i \pi }\right)\sin (\theta )\cos (\theta ) \\
 \left(1-e^{-i \pi }\right)\sin (\theta )\cos (\theta ) &  e^{-i \pi }\cos ^2(\theta )+\sin ^2(\theta ) \\
\end{array}
\right)MHWP(θ)=eiπ/2(cos2(θ)+eiπsin2(θ)(1eiπ)sin(θ)cos(θ)(1eiπ)sin(θ)cos(θ)eiπcos2(θ)+sin2(θ))

simplified using LaTeX: e^{-i \pi }=-1eiπ=1

LaTeX: \overleftrightarrow{M}_{\text{HWP}}^{\prime }(\theta )=e^{i \pi /2} \left(
\begin{array}{cc}
 \cos ^2(\theta )- \sin ^2(\theta ) &  2\sin (\theta )\cos (\theta ) \\
 2\sin (\theta )\cos (\theta ) &  \sin ^2(\theta )-\cos ^2(\theta ) \\
\end{array}
\right)=e^{i \pi /2} \left(
\begin{array}{cc}
 \cos (2\theta ) &  \sin (2\theta ) \\
 \sin (2\theta ) &  -\cos (2\theta ) \\
\end{array}
\right)MHWP(θ)=eiπ/2(cos2(θ)sin2(θ)2sin(θ)cos(θ)2sin(θ)cos(θ)sin2(θ)cos2(θ))=eiπ/2(cos(2θ)sin(2θ)sin(2θ)cos(2θ))

and again, when LaTeX: \theta =0θ=0 and using LaTeX: e^{i \pi /2}=ieiπ/2=i, we get

LaTeX: \overleftrightarrow{M}_{\text{HWP}}^{\prime }(0)=i \left(
\begin{array}{cc}
 1 &  0 \\
 0 &  -1 \\
\end{array}
\right)MHWP(0)=i(1001)

More generally speaking, when we apply a HWP to an arbitrary input beam

LaTeX: \overleftrightarrow{M}_{\text{HWP}}^{\prime }(\alpha )\overset{\rightharpoonup }{E}(\theta )=e^{i \pi /2} \left(
\begin{array}{cc}
 \cos (2\alpha ) &  \sin (2\alpha ) \\
 \sin (2\alpha ) &  -\cos (2\alpha ) \\
\end{array}
\right)\left(
\begin{array}{c}
 \cos (\theta ) \\
 \sin (\theta ) \\
\end{array}
\right)=e^{i \pi /2}\left(
\begin{array}{c}
 \cos (2 \alpha -\theta ) \\
 \sin (2 \alpha -\theta ) \\
\end{array}
\right)MHWP(α)E(θ)=eiπ/2(cos(2α)sin(2α)sin(2α)cos(2α))(cos(θ)sin(θ))=eiπ/2(cos(2αθ)sin(2αθ))

we get a π phase shift of the y-component relative to the x-component of the wave. Also, note that for instance, when θ=0

LaTeX: \overleftrightarrow{M}_{\text{HWP}}^{\prime }(\alpha )\overset{\rightharpoonup }{E}(0)=e^{i \pi /2}\left(
\begin{array}{c}
 \cos (2 \alpha ) \\
 \sin (2 \alpha ) \\
\end{array}
\right)MHWP(α)E(0)=eiπ/2(cos(2α)sin(2α))

the output polarization angle is rotated by TWICE the angle that the fast axis of the HWP makes with the x-axis. So, if you rotate a HWP by 10o, the output polarization (assuming it wasn't aligned with either the fast or slow axis) will be rotated by 20o.

Finally, applying the same formalism to a polarizer with transmission axis aligned with the x-axis, we get

LaTeX: \overleftrightarrow{M}_{\text{LP}}^{\prime }(\theta )=\left(
\begin{array}{cc}
 \cos ^2(\theta ) p_x & \sin (\theta ) \cos (\theta ) p_x \\
 \sin (\theta ) \cos (\theta ) p_x & \sin ^2(\theta ) p_x \\
\end{array}
\right)MLP(θ)=(cos2(θ)pxsin(θ)cos(θ)pxsin(θ)cos(θ)pxsin2(θ)px)

Examples

Now it turns out that the real power of the Jones and Mueller (shown later) matrices is the fact that they can be used in series to model a complicated optical system.

Do you need to model an optical system composed of a linear polarizer with transmission axis +45o to the x-axis, quarter-wave plate with fast axis on the y-axis, and ANOTHER quarter-wave plate with fast axis on the y-axis? If the incident wave is polarized along the x-axis, just multiply those three Jones matrices together in the following way

LaTeX: \overset{\rightharpoonup }{E}_{\text{out}}=\frac{e^{i \pi /2}}{2}\left(
\begin{array}{cc}
 1 &  0 \\
 0 &  -i \\
\end{array}
\right)\left(
\begin{array}{cc}
 1 &  0 \\
 0 &  -i \\
\end{array}
\right)\left(
\begin{array}{cc}
 1 & 1 \\
 1 & 1 \\
\end{array}
\right)\overset{\rightharpoonup }{E}_{\text{in}}Eout=eiπ/22(100i)(100i)(1111)Ein

where LaTeX: \overset{\rightharpoonup }{E}_{\text{in}}=\left(
\begin{array}{c}
 1 \\
 0 \\
\end{array}
\right)Ein=(10), then we would have

LaTeX: \overset{\rightharpoonup }{E}_{\text{out}}=\frac{e^{i \pi /2}}{2}\left(
\begin{array}{c}
 1 \\
 -1 \\
\end{array}
\right)Eout=eiπ/22(11)

Let's break down what this systems is doing element by element. The incident wave is polarized along the x-axis:

LaTeX: \overset{\rightharpoonup }{E}_{\text{in}}=\left(
\begin{array}{c}
 1 \\
 0 \\
\end{array}
\right)Ein=(10)

or

LaTeX: \overset{\rightharpoonup }{E}_{\text{in}}=E_{0,x}\hat{i}+0\hat{j}Ein=E0,xˆi+0ˆj

which is just a linearly polarized wave oscillating in the x-direction. The linear polarizer at +45o to the x-axis (matrix) multiplied by this gives

LaTeX: \overset{\rightharpoonup }{E}_{\text{out}}=\frac{1}{2}\left(
\begin{array}{cc}
 1 & 1 \\
 1 & 1 \\
\end{array}
\right)\left(
\begin{array}{c}
 1 \\
 0 \\
\end{array}
\right)=\frac{1}{2}\left(
\begin{array}{c}
 1 \\
 1 \\
\end{array}
\right)Eout=12(1111)(10)=12(11)

or (aside from scaling factors)

LaTeX: \overset{\rightharpoonup }{E}_{\text{out}}=E_{0,x}\hat{i}+E_{0,y}\hat{j}Eout=E0,xˆi+E0,yˆj

which is just a linearly polarized wave oscillating at +45o from the x-axis. So the action of a polarizer rotated +45o from the x-axis on a wave polarized along the x-axis is to transmit half the power but now the electric field oscillates +45o from the x-axis.

Next we'll tackle the action of the two quarter-wave plates with fast axis aligned with the x-axis:

LaTeX: \overleftrightarrow{M}_{\text{QWP}}\overleftrightarrow{M}_{\text{QWP}}=\left(
\begin{array}{cc}
 1 &  0 \\
 0 &  -i \\
\end{array}
\right)\left(
\begin{array}{cc}
 1 &  0 \\
 0 &  -i \\
\end{array}
\right)=\left(
\begin{array}{cc}
 1 & 0 \\
 0 & -1 \\
\end{array}
\right)MQWPMQWP=(100i)(100i)=(1001)

which, seems oddly familiar. Remember that

LaTeX: \overleftrightarrow{M}_{\text{HWP}}(0)=i \left(
\begin{array}{cc}
 1 &  0 \\
 0 &  -1 \\
\end{array}
\right)MHWP(0)=i(1001)

Woah!! So two quarter wave plates act like a half-wave plate??! YES they do! So the action of two consecutive quarter-wave plates acting on a wave polarized +45o to the x-axis should be to rotate the wave so it is now polarized -45o to the x-axis

LaTeX: \overset{\rightharpoonup }{E}_{\text{out}}=\overleftrightarrow{M}_{\text{QWP}}\overleftrightarrow{M}_{\text{QWP}}\overset{\rightharpoonup }{E}_{\text{in}}=\left(
\begin{array}{cc}
 1 & 0 \\
 0 & -1 \\
\end{array}
\right)\left(
\begin{array}{c}
 1 \\
 1 \\
\end{array}
\right)=\left(
\begin{array}{c}
 1 \\
 -1 \\
\end{array}
\right)Eout=MQWPMQWPEin=(1001)(11)=(11)

And there you have it

LaTeX: \overset{\rightharpoonup }{E}_{\text{out}}=\left(
\begin{array}{c}
 1 \\
 -1 \\
\end{array}
\right)Eout=(11)

or

LaTeX: \overset{\rightharpoonup }{E}_{\text{out}}=E_{0,x}\hat{i}-E_{0,y}\hat{j}Eout=E0,xˆiE0,yˆj

which is a wave polarized -45o w.r.t. the x-axis.

A final note on the Jones matrices: Matrix multiplication is non-commutative, that means order matters. Furthermore, the matrices must be multiplied in 'reverse-order' so-to-speak. This just ensure that the input wave 'encounters' the optics in the correct order. For instance, in the example above, the incident beam went through a polarizer, and two quarter wave plates. The order of the matrices was

LaTeX: \overleftrightarrow{M}_{\text{QWP}}\overleftrightarrow{M}_{\text{QWP}}\overleftrightarrow{M}_{\text{LP}}MQWPMQWPMLP

which when read aloud, is backwards from what first intuition would say. However, we multiply the incident electric field vector on the RIGHT to get the output field, so the order above is correct.

The following is a table containing Jones and Mueller matrices. While we did not derive any of the Mueller matrices, they operate on the Stokes vectors the same way the Jones matrices operate on the Jones vectors and have the advantage that they work for partially polarized light, unlike the Jones matrices. However, they do come at the cost of higher complexity.

Jones and Mueller Matrices